Contents
FOREWORD
Chapter 1. GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Chapter 2. NUMBER THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Chapter 3. COMBINATORICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Chapter 4. ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Chapter 1. GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2. NUMBER THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Chapter 3. COMBINATORICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Chapter 4. ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Este livro destina-se a ajudar estudantes que se preparam tanto para exames IME ITA quanto para Olimpíadas de Matemática nacionais e internacionais. Os professores também acharão esse trabalho útil para o treinamento de jovens estudantes talentosos.

Todos os problemas apresentados nesse livro são supostamente originais. Eles são o fruto da nossa colaboração nos últimos 30 anos em várias revistas de matemática elementar de todo as partes do mundo. Muitos destes problemas foram usados em competições ao longo destes anos, do nível básico ao nível internacional. É possível que alguns problemas já sejam conhecidos, mas muito poucos. O importante é que o leitor encontrará neste livro problemas que trazem algo de novo, trazem novas formas de lidar com os principais conceitos da matemática, uma variedade de métodos, táticas e estratégias.

Os problemas são divididos em capítulos, embora esta divisão não seja rígida, para alguns os problemas exigem experiência em vários campos da matemática, tais como álgebra, geometria, trigonometria e análise, dedicou um capítulo inteiro à teoria dos números, porque os problemas do concurso muitos exigem conhecimento neste campo. Os problemas globais no último capítulo também se destinam a ajudar a graduação estudantes que participam em competições de matemática aprimorar suas habilidades para resolver problemas.

Alunos e professores podem encontrar aqui idéias e questões que podem ser temas interessantes para os círculos de matemática. Devido ao nível de dificuldade dos problemas contidos neste livro, consideramos apropriado fazer uma apresentação muito clara e completa de todas as soluções.
Em muitos casos, as soluções alternativas são fornecidas. Como um conselho a todos os leitores, sugerimos que eles tentam encontrar as suas próprias soluções para os problemas antes de ler as resoluções. Muitos problemas podem ser resolvidos em múltiplas formas e pertencem extensões interessantes.

Esta edição é significativamente diferente da edição romena de 2002 pois possui problemas mais recentes, seguidos por suas soluções, juntamente com referências para todos os problemas publicados.

Queremos extender a nossa gratidão a todos os que influenciaram de uma maneira ou de outra a versão final do livro. Teremos o prazer de receber qualquer observação por parte dos leitores.

Os autores




Idioma: Inglês básico

(Leve Defeito) 360 Problems for mathematical contest - Titu Andreescu e Andrica Dorin

SKU
607
Em Estoque

Calcule seu frete

Características

Textos

 

Livros com leves defeitos Os livros classificados como leves defeitos podem apresentar avarias estéticas, como riscos, marcas, manchas, amassados, desgastes, falta de alinhamento no corte e marcas de cola. Também podem ser de edições anteriores. Os defeitos não afetam o conteúdo dos livros. Para entender melhor o defeito, entre em contato com nosso setor de atendimento ao cliente VestSeller. (85) 998109349 Segunda a Sexta – 9:00 às 17:00 h sac@vestseller.com.br https://vestseller.com.br/contato

É com grande prazer que a VestSeller publica com exclusividade no Brasil, em parceria com a editora romena Gil Publishers, mais essa obra prima do Titu Andreescu e Andrica Dorin. Este livro é o fruto de uma prodigiosa atividade dos dois autores, famosos elaboradores de questões e problemas de Matemática para Olimpíadas e outras competições semelhantes. Eles têm publicado inúmeros problemas originais em diversas revistas de matemática do mundo todo.\r\nO presente livro está organizado em seis capítulos: álgebra, teoria dos números, geometria, trigonometria,\r\nanálise e problemas abrangentes. Além disso, outros campos da matemática encontraram seu lugar neste livro, por exemplo, problemas combinatórios podem ser encontrados no último capítulo, e problemas envolvendo números complexos estão incluídos na secção de trigonometria.\r\nAlém disso, em todos os capítulos deste livro, o leitor pode encontrar numerosos problemas de desigualdade. Todos os problemas apresentados são interessantes, com nível crescente de dificuldade, alguns deles são verdadeiras jóias que lhe dão grande satisfação para qualquer amante da matemática tentar resolver ou até mesmo ampliá-las. Um livro indispensável para estudantes e professores do segmento das Olimpíadas de Matemática e para aqueles que se preparam para o IME.\r\n\r\n

Quem viu esse também viu
comentários
escreva seu comentário
Você está avaliando:(Leve Defeito) 360 Problems for mathematical contest - Titu Andreescu e Andrica Dorin
Qual a nota você dá para esse produto?
0/5